COBRA

Co-morbidity in relation to AIDS

Brain MRI changes associated with poorer cognitive function despite suppressive antiretroviral therapy

Jonathan Underwood, James H Cole, Matthan Caan, Davide De Francesco, Robert Leech, Rosan A. van Zoest, Tanja Su, Gert J Geurtsen, Ben A Schmand, Peter Portegies, Maria Prins, Ferdinand W.N.M. Wit, Caroline A Sabin, Charles Majoie, Peter Reiss, David J Sharp and Alan Winston for The Co-morBidity in Relation to Aids (COBRA) Collaboration

jonathan.underwood@imperial.ac.uk

ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUD

Financial disclosures

Jonathan Underwood has received a scholarship from the British HIV Association (funded by MSD) to attend CROI 2015 and sponsorship from Gilead Sciences to attend EACS 2015.

Background

Reported prevalence of HIV-associated cognitive impairment remains high

European cohort studies with **appropriate** HIV-control populations now established

Neurological sub-study

Distribution of the number of age-associated noncommunicable comorbidities stratified by age

Judith Schouten et al. Clin Infect Dis. 2014:59:1787-1797

Hypotheses tested

Despite suppressive cART, compared to an appropriate control population, HIV+ individuals will have evidence of:

- Poorer cognitive performance
- Grey and white matter atrophy
- White matter microstructural abnormalities

Structural brain and cognitive abnormalities would occur together and be more common in HIV+ individuals

Participants

Inclusion criteria

HIV+ group (n=134)

- documented HIV infection
- age ≥ 45 years at study entry
- documented plasma HIV RNA <50 copies/mL > 12 months on cART

HIV- group (n=79)

- documented negative HIV test in past
 6 months or at screening
- age ≥ 45 years at study entry

Exclusion criteria

- current major depression (PHQ-9 ≥ 15)
- chronic neurological diseases
- history of severe head injury
- history of cerebral infections (including AIDS defining illnesses)
- severe psychiatric disease

All underwent: **cognitive testing, MRI scanning** (several modalities) and CSF examination (not presented today)

Methods

Cognitive battery

(testing attention, executive function, language, memory, motor function and processing speed)

Methods

Cognitive battery

(testing attention, executive function, language, memory, motor function and processing speed)

 $\sqrt{(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}$

anisotropy (FA)

Statistics

Cognitive battery

(testing attention, executive function, language, memory, motor function and processing speed)

Raw scores converted to demographically adjusted cognitive domain T-scores

Cognitive impairment defined using Frascati¹, GDS² and MNC³ criteria

Group
comparison
(with chi-squared
and Wilcoxon ranksum as appropriate)

¹Antinori A et al, *Neurology* (2007); ²Carey CL et al. *J Clin Exp Neuropsyc* (2004); ³Huizenga HM et al, *Neurospychologia* (2007)

Statistics

Cognitive battery

(testing attention, executive function, language, memory, motor function and processing speed)

Raw scores converted to demographically adjusted cognitive domain T-scores

Cognitive impairment defined using Frascati¹, GDS² and MNC³ criteria

Volumetric

¹Antinori A et al, *Neurology* (2007); ²Carey CL et al. *J Clin Exp Neuropsyc* (2004); ³Huizenga HM et al, *Neurospychologia* (2007)

Neuroimaging (3T)

Diffusion

Group comparison with nonparametric permutation testing (using FSL's randomise 10,000 permutations, adjusted for age, ICV and scanner)

Statistics

Cognitive battery

(testing attention, executive function, language, memory, motor function and processing speed)

Volumetric

Neuroimaging (3T)

Diffusion

Raw scores converted to demographically adjusted cognitive domain Tscores

> Cognitive impairment defined

using Frascati¹, GDS² and MNC³ criteria

Group comparison (with chi-squared and Wilcoxon ranksum as appropriate)

Extraction of summary statistics using atlases (FSL)

Group comparison with nonparametric permutation testing (using FSL's randomise 10,000 permutations, adjusted for age, ICV and scanner)

k-means clustering (R)

¹Antinori A et al, *Neurology* (2007); ²Carey CL et al. *J* Clin Exp Neuropsyc (2004); ³Huizenga HM et al, Neurospychologia (2007)

Baseline characteristics

	HIV+ (n=134)	HIV- (n=79)	p-value
Age (years), median (IQR)	55 (51-62)	57 (52-64)	0.24
Gender, n (%)			0.79
Female	9 (7%)	6 (7%)	
Male	125 (93%)	73 (92%)	
Ethnicity, n (%)			0.03
Black-African	16 (12%)	2 (3%)	
White	117 (88%)	76 (97%)	
Sexuality, n (%)			0.45
MSM	104 (77%)	59 (75%)	
Bisexual	10 (8%)	4 (5%)	
Heterosexual	18 (13%)	16 (20%)	
Years of education, median (IQR)	14 (13-16)	16 (14-17)	0.23
Smoking status, n (%)			0.24
Current smoker	40 (30%)	20 (25%)	
Ex-smoker	58 (43%)	29 (37%)	
Never smoked	36 (27%)	30 (38%)	
Alcohol consumption, n (%)			0.04
Current drinker	104 (78%)	71 (90%)	
Previous drinker	18 (13%)	3 (5%)	
Never drunk	12 (9%)	4 (5%)	
Use of recreational drugs in past 6 months, n (%)	44 (33%)	18 (23%)	0.16

Baseline characteristics — HIV+ group

	n=134
Likely route of HIV transmission, n (%)	
MSM	115 (86%)
Heterosexual sex	15 (11%)
IVDU/Blood product	1 (1%)
Unknown	3 (2%)
Years since HIV diagnosis, median (IQR)	15.0 (9.1-20.0)
Duration of cART (years), median (IQR)	12.5 (7.4-16.9)
HIV RNA viral load < 200 copies/mL, n (%)	134 (100%)
CD4 count (cells/μL), median (IQR)	629 (472-806)
Nadir CD4 count (cells/μL), median (IQR)	180 (90-250)
CD4+:CD8+ cell count ratio, median (IQR)	0.84 (0.60-1.12)

HIV-positive group has poorer cognitive function

Boxplots of demographically adjusted cognitive domain T-scores by HIV-serostatus. P values calculated using Wilcoxon rank sum test.

HIV-associated grey matter atrophy

Grey matter voxel based morphometry group comparison. Areas with significantly (p < 0.05) lower grey matter volume coloured by the t-statistic - corrected for multiple comparisons (TFCE) and adjusted for age, intracranial volume and scanner. Statistical image overlaid on MNI 152 T1

HIV-associated white matter injury

White matter tract based spatial statistics group comparison. Areas of significantly (p < 0.05) lower fractional anisotropy (FA), higher mean diffusivity (MD) and higher radial diffusivity (RD) are coloured by t-statistic red-yellow, light blue and dark blue respectively - corrected for multiple comparisons (TFCE) and adjusted for age, intracranial volume and scanner. Overlaid on the white matter skeleton (green) and the mean FA image (greyscale).

K-means cluster analysis: both groups

Discriminant coordinate plot showing the separation of the clusters based on the k-means cluster analysis of parcellated grey matter and mean fractional anisotropy data. Each individual number represents a participant with the number representing their cluster assignment

2 cluster solution optimally partitioned data

• Duda-Hart test: p<0.0001

High degree of stability to resampling

 Jaccard bootstrap mean 0.99 for both clusters

K-means cluster analysis: HIV-

Discriminant coordinate plot showing the separation of the clusters based on the k-means cluster analysis of parcellated grey matter and mean fractional anisotropy data. Each individual number represents a participant with the number representing their cluster assignment

K-means cluster analysis: HIV+

Discriminant coordinate plot showing the separation of the clusters based on the kmeans cluster analysis of parcellated grey matter and mean fractional anisotropy data. Each individual number represents a participant with the number representing their cluster assignment

Imaging phenotype associated with poorer cognitive function

Jitterplot of cognitive domain T-scores grouped by k-means cluster analysis. Black lines represent medians for each cluster with p-values calculated using the Wilcoxon rank sum test.

Imaging phenotype associated immune activation and older age

HIV+ individuals:

Parameter	Higher GMV/FA	Lower GMV/FA	p-value
Age	53.2	58.6	<0.001
CD4:CD8 ratio	1.06	0.82	0.01

NB: Cognitive domain T-scores account for age and level of education and groups are matched for age

Jitterplot of cognitive domain T-scores grouped by k-means cluster analysis. Black lines represent medians for each cluster with p-values calculated using the Wilcoxon rank sum test.

Conclusions

HIV+ individuals have evidence of cognitive impairment, grey matter atrophy and white matter microstructural injury

- despite fully suppressive cART
- compared to an appropriate control population

Structural brain abnormalities tend to occur together

- found more commonly in HIV+ individuals
- associated with poorer cognitive function
- associated with markers of immune dysregulation

Limitations – cohort study

- unmeasured differences could confound group comparisons
- but mitigated against this with an appropriate HIV- control group

The Co-morBidity in Relation to Aids (COBRA) Collaboration

Imperial College of Science, Technology and Medicine - Department of Medicine, Division of Infectious Diseases: A. Winston, J. Underwood, L. McDonald, M. Stott, K. Legg, A. Lovell, O. Erlwein, N. Doyle, C. Kingsley.

McDonald, M. Stott, K. Legg, A. Lovell, O. Erlwein, N. Doyle, C. Kingsley. Department of Medicine, Division of Brain Sciences, The Computational, Cognitive & Clinical Neuroimaging Laboratory: D.J. Sharp, R. Leech, J.H. Cole.

University College London - Research
Department of Infection and Population Health: C.
Sabin, D. de Francesco.

GGD Amsterdam/Public Health Service

Amsterdam -Cluster of Infectious Diseases, research department: M. Prins, M. Martens, S. Moll, J. Berkel, M. Totté, S. Kovalev.

Stichting Katholieke Universiteit Nijmegen -D. Burger, M. de Graaff-Teulen.

Erasmus Universitair Medisch Centrum Rotterdam - *Department of Genetics:* J. Hoeijmakers, J. Pothof.

Vlaams Instituut voor Biotechnologie - *Inflammation research center:* C. Libert, S. Dewaele.

Universität Konstanz - *Department of Biology*: A. Bürkle, T. Sindlinger, M. Moreno-Villanueva, A. Keller.

Alma Mater Studiorum Universita di Bologna - Department of Experimental, Diagnostic and Specialty Medicine: C. Franceschi, P. Garagnani, C. Pirazzini, M. Capri, F. Dall'Olio, M. Chiricolo, S. Salvioli.

Göteborgs Universitet - M. Gisslén, D. Fuchs, H. Zetterberg.

Academisch Medisch Centrum, Universiteit van
Amsterdam - Department of Global Health and
Amsterdam Institute for Global Health and Development
(AIGHD): P. Reiss, F.W.N.M. Wit, J. Schouten,
K.W. Kooij, R.A. van Zoest, B.C. Elsenga, F.R. Janssen, M.
Heidenrijk, W. Zikkenheiner. Division of Infectious
Diseases: M. van der Valk. Department of Experimental
Immunology: N.A. Kootstra, A.M. Harskamp-Holwerda, I.
Maurer, M.M. Mangas Ruiz, A.F. Girigorie.

Department of Medical Microbiology: J. Villaudy, E.
Frankin, A. Pasternak, B. Berkhout, T. van der
Kuyl. Department of Neurology: P. Portegies, B.A.
Schmand, G.J. Geurtsen, J.A. ter Stege, M. Klein
Twennaar. Department of Radiology: C.B.L.M. Majoie,
M.W.A. Caan, T. Su. Department of Cell Biology: K.
Weijer. Division of Endocrinology and Metabolism:
P.H.L.T. Bisschop. Department of Experimental
neuroendocrinology: A. Kalsbeek. Department of
Ophthalmology: M. Wezel. Department of Psychiatry: I.
Visser, H.G. Ruhé.

Stichting HIV Monitoring - S. Zaheri, M.M.J. Hillebregt, Y.M.C. Ruijs, D.P. Benschop.

Università degli studi di Modena e Reggio Emilia Department of Medical and Surgical Sciences for
Children & Adults: G. Guaraldi.

This research was funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 305522 to COBRA; the Netherlands Organisation for Health Research and Development (ZonMW) grant nr. 300020007 & Stichting AIDS Fonds grant nr. 2009063, Nuts-Ohra Foundation grant nr 1003-026. and unrestricted scientific grants from: ViiV Healthcare, Gilead Sciences, Janssen Pharmaceutica N.V. Bristol Myers Squibb, and Merck & Co to the AGEhIV cohort study, as well as investigator initiated grants from BMS, Gilead Sciences, Janssen, Merck and ViiV Healthcare to the POPPY cohort study

The Co-morBidity in Relation to Aids (COBRA) Collaboration

Thank you for listening. Any questions?